Global analysis of a piecewise linear Liénard-type dynamical system
نویسندگان
چکیده
In this paper, we consider a planar dynamical system with a piecewise linear function containing an arbitrary (but finite) number of dropping sections and approximating some continuous nonlinear function. Studying all possible local and global bifurcations of its limit cycles, we prove that such a piecewise linear dynamical system with k dropping sections and 2k + 1 singular points can have at most k + 2 limit cycles, k + 1 of which surround the foci one by one and the last, (k + 2)th, limit cycle surrounds all of the singular points of this system.
منابع مشابه
The Study of Nonlinear Dynamical Systems Nuclear Fission Using Hurwitz Criterion
In this paper, the nonlinear dynamic system of equations, a type of nuclear ssion reactor is solved analytically and numerically. Considering that the direct solution of three-dimensional dynamical systems analysis and more in order to determine the stability and instability, in terms of algebraicsystems is dicult. Using certain situations in mathematics called Hurwitz criterion, Necessary and ...
متن کاملDynamical behavior of a stage structured prey-predator model
In this paper, a new stage structured prey-predator model with linear functional response is proposed and studied. The stages for prey have been considered. The proposed mathematical model consists of three nonlinear ordinary differential equations to describe the interaction among juvenile prey, adult prey and predator populations. The model is analyzed by using linear stability analysis to ob...
متن کاملTowards Theory of Piecewise Linear Dynamical Systems ⋆
In this paper, we consider a planar dynamical system with a piecewise linear function containing an arbitrary number (but finite) of dropping sections and approximating some continuous nonlinear function. Studying all possible local and global bifurcations of its limit cycles, we prove that such a piecewise linear dynamical system with k dropping sections and 2k + 1 singular points can have at ...
متن کاملDynamics of Discrete Time Systems with a Hysteresis Stop Operator
We consider a piecewise linear two-dimensional dynamical system that couples a linear equation with the so-called stop operator. Global dynamics and bifurcations of this system are studied depending on two parameters. More complicated systems involving stop operators may have potential applications in the economic modeling of agents that display frictions and memory-dependence.
متن کاملBifurcation analysis and dynamics of a Lorenz –type dynamical system
./files/site1/files/0Abstract1.pdfIn this paper we consider a continues Lorenz – type dynamical system. Dynamical behaviors of this system such as computing equilibrium points, different bifurcation curves and computation of normal form coefficient of each bifurcation point analytically and numerically. In particular we derived sufficient conditions for existence of Hopf and Pitchfork bifurcati...
متن کامل